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Context-aware NMT: why?

Research showed that a crucial challenge for neural machine translation (NMT) to reach human quality is the 

ability to exploit inter-sentential context - the preceding or following sentences in the same document 

[Läubli et al., 2018; Toral et al., 2018; Castilho et al., 2020] 
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1
5

Problem

● All the available sentences in the parallel document.

● The parallel document and its meta-data:
○ author’s information;

○ date of the writing;

○ domain of the writing;

○ visual context.

● A few neighbouring sentences.

Most existing approaches use a few preceding sentences [Maruf et al., 2021],                                              

where most of the disambiguating information is present [Castilho et al., 2020] .
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Concatenation Multi-encoding

Context-aware NMT: how? [Kim et al.,2019]
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Transformer by Vaswani et al. (2017), “Attention is all you need”.
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Objectives

1. Identify challenges in both multi-encoding and concatenation approaches.

2. Propose remedies to tackle the challenges identified.

3. Improve understanding through the analysis of the proposed solutions.
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: target doc

Multi-encoding approaches

Trainable parameters: 

      are trained on sentence-level and  

document-level data without        ;

      are trained on document-level data 

while        are freezed;    
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Strengths Weaknesses

Efficient generation and processing with 
self-attention.

More parameters.

Self-attention is not distracted by context [Bao et 
al., 2021]: it can focus on intra-sentential linguistic 
relationships, which are the most important. 

Kim et al. (2019), Li et al. (2020) and Lopes et al. 
(2020) found multi-encoding approaches to 
underperform context-agnostic NMT.



Multi-encoding approaches

31

Strengths Weaknesses

Efficient generation and processing with 
self-attention.

More parameters.

Self-attention is not distracted by context [Bao et 
al., 2021]: it can focus on intra-sentential linguistic 
relationships, which are the most important. 

Kim et al. (2019), Li et al. (2020) and Lopes et al. 
(2020) found multi-encoding approaches to 
underperform context-agnostic NMT.



Multi-encoding approaches

32

Strengths Weaknesses

Efficient generation and processing with 
self-attention.

More parameters.

Self-attention is not distracted by context [Bao et 
al., 2021]: it can focus on intra-sentential linguistic 
relationships, which are the most important. 

Kim et al. (2019), Li et al. (2020) and Lopes et al. 
(2020) found multi-encoding approaches to 
underperform context-agnostic NMT.

Contextual parameters are hard to train !



Double challenge of sparsity

33

Strengths Weaknesses

Efficient generation and processing with 
self-attention.

More parameters.

Self-attention is not distracted by context [Bao et 
al., 2021]: it can focus on intra-sentential linguistic 
relationships, which are the most important. 

Kim et al. (2019), Li et al. (2020) and Lopes et al. 
(2020) found multi-encoding approaches to 
underperform context-agnostic NMT.

Contextual parameters are hard to train !



Double challenge of sparsity

34

1. The sparsity of the training signal: words needing context to be correctly translated are sparse;

○ most of the words of a sentence can be translated without context → scarce training signal.



Double challenge of sparsity

35

1. The sparsity of the training signal: words needing context to be correctly translated are sparse;

○ most of the words of a sentence can be translated without context → scarce training signal.

2. the sparsity of context words that are useful for contextualization

○ most of the context is useless                                                                                                                    

→ distracting the model from retrieving useful information → training is hard.



Double challenge of sparsity

36

1. The sparsity of the training signal: words needing context to be correctly translated are sparse;

○ most of the words of a sentence can be translated without context → scarce training signal.

2. the sparsity of context words that are useful for contextualization

○ most of the context is useless                                                                                                                    

→ distracting the model from retrieving useful information → training is hard.

Trivial solution: more data?



Double challenge of sparsity

37

1. The sparsity of the training signal: words needing context to be correctly translated are sparse;

○ most of the words of a sentence can be translated without context → scarce training signal.

2. the sparsity of context words that are useful for contextualization

○ most of the context is useless                                                                                                                    

→ distracting the model from retrieving useful information → training is hard.

Trivial solution: more data?
However:

● Document-level parallel data are scarcely available.

● Inefficient because of the double challenge of sparsity.
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Proposed approach: Divide and Rule
We propose a solution that addresses the double challenge of sparsity directly:
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Good morning Mr. President , how are you today ?

Bonjour Monsieur le Président , comment allez-vous aujourd' hui ?

Xj

Yj

Proposed approach: Divide and Rule
We propose a solution that addresses the double challenge of sparsity directly:

∀(Xj, Yj) ∈ Ctrain
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Good morning Mr. President , how are you today ?

Bonjour Monsieur le Président , comment allez-vous aujourd' hui ?

Good morning Mr. President , \n how are you today ?

Bonjour Monsieur le Président , \n comment allez-vous aujourd' hui ?

Xj

Yj

Xj , 1

Yj  , 1

Xj , 2

Yj  , 2

∀(Xj, Yj) ∈ Ctrain

Proposed approach: Divide and Rule
We propose a solution that addresses the double challenge of sparsity directly:

1) Pre-train on split data.
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Good morning Mr. President , how are you today ?

Bonjour Monsieur le Président , comment allez-vous aujourd' hui ?

Good morning Mr. President , \n how are you today ?

Bonjour Monsieur le Président , \n comment allez-vous aujourd' hui ?

Xj

Yj

Xj , 1

Yj  , 1

Xj , 2

Yj  , 2

∀(Xj, Yj) ∈ Ctrain

Proposed approach: Divide and Rule
We propose a solution that addresses the double challenge of sparsity directly:

1) Pre-train on split data.

2) Train on original data.
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Proof of concept

45

Density of pronominal antecedents by distance;
Opensubs18. Density = occurrences / # tokens to attend.

How does the distribution of pronominal antecedents 

change when sentences are split in a half?

1. More cases of context-dependent anaphoric 

pronouns because training sequences become 

incomplete segments:

→ reduced sparsity of the training signal.

2. Denser cases of pronominal antecedents because 

training sequences become shorter:

→ reduced sparsity of relevant context.
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Multi-encoding architecture by Miculicich et al. (2018).
Total parameters:                           .
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Data

       are trained on sentence-level + document-level data;

       are trained on document-level data while       are freezed:    

➔ “Lower” resource setting (0.2-0.6M sents);

➔ “Higher” resource setting (2-6M sents).

3 language pairs: English → Russian/German/French.

Models

base: Transformer-base with parameters       ;

K1: current sentence + 1 past source context sentences;

K3: current sentence + 3 past source context sentences.

Multi-encoding architecture by Miculicich et al. (2018).
Total parameters:                           .
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Evaluation

BLEU on test set.

+ Accuracy on contrastive test sets for the evaluation of discourse phenomena disambiguation.

● ContraPro (En-De/Fr): anaphoric pronouns [Muller et al., 2018; Lopes et al., 2020].

● Voita (En-Ru): verb-phrase ellipsis [Voita et al., 2019].

BLEU is ill-equipped for measuring context-aware translation improvements, which affect a few 
words only -> targeted evaluation is necessary to appreciate model differences.

[Papinei et al., 2020]
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Divide and Rule is an effective solution
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Many works in the literature trained 
and compared multi-encoding models 
on IWSLT.

➔ More training is needed
50.41

+2.42 +1.66

+11.61
+13.35 +12.36

+17.81 +18.31

+7.35

Accuracy on contrastive test sets for the translation of discourse phenomena, averaged across 
the three language pairs En → Ru/De/Fr

baseline

10x 
data

10x 
data



Divide and Rule is an effective solution
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BLEU is virtually constant across the 
training settings.

➔ Average translation quality is 
constant while the modeling of 
inter-sentential discourse 
phenomena is improving.

Many works in the literature trained 
and compared multi-encoding models 
on IWSLT.

➔ More training is needed

BLEU on the test sets, averaged across the three language pairs En → Ru/De/Fr

10x 
data

10x 
data

baseline+0.00 -0.24 +0.00 +0.10 +0.11 +0.40 -0.08 +0.09
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Where to split?

Good morning Mr. President , how are you today ?

Bonjour Monsieur le Président , comment allez-vous aujourd' hui ?

Good morning Mr. President , \n how are you today ?

Bonjour Monsieur le Président , \n comment allez-vous aujourd' hui ?

         1           2         3             4         5            1      2      3        4      5

         1              2          3           4        5                1                   2                3           4    5

 Middle      Aligned      Synt      Multi      



 Middle      Aligned      Synt     

Accuracy on targeted test sets for the translation of coreferential pronouns, averaged across En → 
De/Fr language pairs

72.14 70.86
72.62

70.27 70.88 71.69

62

Where to split?



Best tradeoff simplicity-performance
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Accuracy on targeted test sets for the translation of coreferential pronouns, averaged across En → 

De/Fr language pairs

72.14 70.86
72.62

70.27 70.88 71.69

 Middle      Aligned      Synt     

Where to split?
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Concatenation approaches: SlidingKtoK

: source doc

: target doc

translate

context current

context current

context current

current
input 1.

input 2.

input 3.

input 4.
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Training example

Conventional objective

Concatenation approaches: SlidingKtoK
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Strengths Weaknesses

No extra learnable parameters added to the 
standard Transformer architecture.

Attention can be distracted by context instead of 
focusing on local relationships between tokens, 
which are the most important [Bao et al., 2021]. 

Since current and context sentences belong to the 
same sequence, inter-sentential token 
contextualization can be treated in the same way 
as intra-sentential contextualization.

Even though we only keep the translation of the 
current sentence after generation, the standard 
translation objective function is not focused on 
predictions of the current sentence. 
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Strengths Weaknesses

No extra learnable parameters added to the 
standard Transformer architecture.

Attention can be distracted by context instead of 
focusing on intra-sentential linguistic relationships, 
which are the most important [Bao et al., 2021]. 

Since current and context sentences belong to the 
same sequence, inter-sentential token 
contextualization can be treated in the same way 
as intra-sentential contextualization.

Even though we only keep the translation of the 
current sentence after generation, the standard 
translation objective function is not focused on 
predictions of the current sentence. 
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Training example

Conventional objective

Context-discounted objective

Remedy 1: context discounting
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Concatenation approaches: remedies
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1. Context discounting in the training objective.

2. Encoding sentence position into token representations.
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1. Context discounting in the training objective.

2. Encoding sentence position into token representations.
a. Segment-shifted position embeddings.

Remedy 2: encoding sentence position
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s = shift = 10

How big should be the shift?
● Average sentence length (in the corpus)
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● Big shift: shift >> average sentence length
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Input

Token Embedding

Position EmbeddingSegment-shifted

s = shift = 10

How big should be the shift?
● Average sentence length (in the corpus)
● Average sentence length (in the concatenated sequence)
● Big shift: shift >> average sentence length

Remedy 2: encoding sentence position
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1. Context discounting training objective.

2. Encoding sentence position into token representations.
a. Segment-shifted position embeddings.

b. Segment embeddings [Devlin et al., 2019].

Remedy 2: encoding sentence position
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● One-hot.
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Remedy 2: encoding sentence position
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● Learned [Devlin et al., 2019].
● Sinusoidal [Vaswani et al., 2017].
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Remedy 2: encoding sentence position

● One-hot.
● Learned [Devlin et al., 2019].
● Sinusoidal [Vaswani et al., 2017].
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1. Context discounting training objective.

2. Encoding sentence position into token representations.
a. Segment-shifted position embeddings.

b. Segment embeddings.

c. Position-Segment Embeddings (PSE).

Remedy 2: encoding sentence position
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To avoid another linear projection, we propose to reduce the dimensionality of PE and SE:
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Remedy 2: encoding sentence position

d
model

 = 512

d
PE 

= 508

d
SE

= 4

To avoid another linear projection, we propose to reduce the dimensionality of PE and SE:
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● One-hot.
● Learned [Devlin et al., 2019].
● Sinusoidal [Vaswani et al., 2017].
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1. Context discounting training objective.

2. Encoding sentence position into token representations.
a. Segment-shifted position embeddings.

b. Sentence embeddings;

c. Position-Sentence Embeddings (PSE).

Remedy 2: encoding sentence position
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Models

base: context-agnostic Transformer-base.

s4to4: sliding4to4 concatenation approach.
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Data

English → Russian [Voita et al., 2019]

● 6M sentence pairs from OpenSubtitles18;

● short documents of 4 sentences each.

Data

English → German [Cettolo et al., 2012]

● 0.2M sentence pairs from IWSLT17; 

● long documents of hundreds of sentences each.
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Evaluation

BLEU [Papinei et al., 2020]

Accuracy on contrastive test sets for the disambiguation of discourse phenomena:

+ ContraPro (En-De): coreferential pronouns [Muller et al., 2018].

+ Voita (En-Ru): deixis, lexical cohesion, noun phrase ellipsis, verb-phrase ellipsis [Voita et al., 2019].

Data

English → Russian [Voita et al., 2019]

● 6M sentence pairs from OpenSubtitles18;

● short documents of 4 sentences each.

Data

English → German [Cettolo et al., 2012]

● 0.2M sentence pairs from IWSLT17; 

● long documents of hundreds of sentences each.
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baselines: 

Context discounting: main results

(+1.40 accuracy)

(+2.96 accuracy)
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Context discounting: analysis

Evaluation of En→Ru s4to4 trained with various levels of context discounting.
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Context discounting: analysis

Evaluation of En→Ru s4to4 trained with various levels of context discounting.

➔ Self-attention gets more focused.
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Context discounting: analysis

➔ Model becomes more robust to 
unseen context-sizes.
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Accuracy on Voita’s contrastive set on En → Ru discourse phenomena. 
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Accuracy on Voita’s contrastive set on En → Ru discourse phenomena. 

72.02

73.42

s4to4

s4to4+CD

+1.26

+2.14

-0.36

+0.48

+1.08

+2.52

+0.26

+1.06

s4to4 + CD + encodings

These results could not be replicated on En → De.

vanilla: adding encodings to 

the input of the 1st block

persistent: adding encodings 

to the input of every block

Position-Segment 
Embeddings

PSE
p,s
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Outline

1. Introduction

2. Multi-encoding approaches
a. Lupo, L., Dinarelli, M. and Besacier, L., Divide and Rule: Effective Pre-Training for Context-Aware Multi-Encoder NMT, ACL 2022.

3. Concatenation approaches
a. Lupo, L., Dinarelli, M. and Besacier, L., Focused Concatenation for Context-Aware NMT, WMT 2022.

b. Lupo, L., Dinarelli, M. and Besacier, L., Encoding Sentence Position in Context-Aware NMT with Concatenation, Insights 2023.

4. Conclusions
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a. the training data - Divide and Rule for multi-encoding approaches

b. the training objective - Context discounting for concatenation approaches
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Contributions

1. Identified challenges in both multi-encoding and concatenation approaches;

2. Proposed and evaluated remedies, exploring different aspects of these approaches:

a. the training data - Divide and Rule for multi-encoding approaches

b. the training objective - Context discounting for concatenation approaches

c. the architecture - Sentence position encodings for concatenation approaches;

3. Improved understanding of context-aware NMT approaches through analysis.
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Perspectives

1. Long-range arena: contrastive test sets for the evaluation of wider-context-aware NMT, including:
a. long-context-dependent discourse phenomena;
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Perspectives

1. Long-range arena: contrastive test sets for the evaluation of longer-context-aware NMT, including:
a. long-context-dependent discourse phenomena;

2. Large multilingual language models (GPT3, Bloom, LLaMa) as automatic post editors: from 

context-agnostic NMT document translations to coherent translations.
a. Prompt engineering.

b. Inclusion of meta-data such as authors’ information or a glossary for domain-specific terminology constraints.

c. Fine-tuning on DocRepair-like training data [Voita et al., 2019b].
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Thank you.
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Contrastive test sets

132

Accuracy on contrastive test sets for the evaluation of discourse phenomena disambiguation.

Source Context

Good morning Mr President!

Source

How are you today?

Target Context

Bonjour Monsieur le Président!

Translation Candidates

● Comment allez-vous aujourd'hui?

● Comment vas-tu aujourd'hui?



Data
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Contrastive test sets [voita et al., 2019a]
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Testing with inconsistent context
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D&R scope

● 4,000 written languages in the world (Eberhard et al., 2021)

● Most of them can be grouped in a few types with similar word order, as shown by the ample 

literature on word order typologies (Dryer and Haspelmath, 2013; Tomlin, 2014).

● The primary order of interest is the constituent order, concerning the relative order of subject (S), 

object (O) and verb (V) in a clause.

● ~40% of languages is SVO (En,Fr,Ru,De)

● ~40% of languages is SOV (De)

● ~10% of languages is VSO. 
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Cumulative ratio of the variance explained by the principal components of the 1024 × 512 
sinusoidal position embedding matrix.

Encoding sentence position with PSE

Can we reduce the size of sinusoidal embeddings without loss of information?

d
model

 = 512

d
PE 

= 508

d
SE

= 4



Context-discounting: preliminary analysis

138



Full context discounting?
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Synergies: D&R + CD
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Significance testing

McNemar’s test (McNemar, 1947) for comparing accuracy results on the contrastive test sets. This test is 

specifically designed for paired nominal observations, which is exactly the situation encountered in 

contrastive test sets: each system obtains a binary outcome (correct/incorrect ranking) for each contrastive 

example

Approximate randomization (Riezler and Maxwell, 2005) for all the other cases, e.g., for comparing BLEU 

scores. Approximate randomization is based on resampling and it can be applied to non-binary, non-paired 

scores without requiring compliance to any hypothesis about their distribution (contrarily to, for instance, the 

Wilcoxon test (Wilcoxon, 1946)).
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