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standard Transformer architecture.

Attention can be distracted by context instead of 
focusing on local syntactic structures [1], which are 
the most abundant, while context is important only 
for sparse tokens [2]. 

Since current and context sentences belong to the 
same sequence, inter-sentential token 
contextualization can be treated in the same way 
as intra-sentential contextualization.

Even though we only keep the translation of the 
current sentence after generation, the standard 
translation objective function is not focused on 
predictions of the current sentence. 

Context-aware NMT approaches

[1] Bao et al., 2021: G-transformer for document-level machine translation.
[2] Lupo et al., 2022: Divide and Rule: Effective Pre-Training for Context-Aware Multi-Encoder Translation Models. 24



Proposed approaches



Context-discounted objective

Training example

Conventional objective

26



Context-discounted objective

Training example

Conventional objective

Context-discounted objective

27



Context-discounted objective

Training example

Conventional objective

Context-discounted objective

28
➔ improve model focus on the current sentence;



Segment-shifted position embeddings

29

Sliding3to3



Segment-shifted position embeddings

positions

30

Sliding3to3
1    2    3          4    5   6           7    8   9



Segment-shifted position embeddings

1    2    3          4    5   6           7    8   9

1    2    3          14   15  16         27 28 29 

+10 +20

positions

segment-shifted positions
shift=10

31

Sliding3to3



Segment-shifted position embeddings

1    2    3          4    5   6           7    8   9

1    2    3          14   15  16         27 28 29 

+10 +20

positions

segment-shifted positions
shift=10

➔ strengthen sentence boundaries;
➔ better distinguish between inter-sentential and intra-sentential discourse phenomena;
➔ no extra parameters (VS segment-embeddings like BERT).

32

Sliding3to3



Segment-shifted position embeddings

1    2    3          4    5   6           7    8   9

1    2    3          14   15  16         27 28 29 

+10 +20

positions

segment-shifted positions
shift=10

How big should be the shift?
● Average sentence length (in the corpus)
● Average sentence length (in the concatenated sequence)
● Big shift: shift >> average sentence length

➔ strengthen sentence boundaries;
➔ better distinguish between inter-sentential and intra-sentential discourse phenomena;
➔ no extra parameters (VS segment-embeddings like BERT).
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The accuracy on Disc. is detailed on its left with the accuracy on each of the 4 subsets 
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Impact on the distribution of attention weights
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Self-attention gets more focused
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Concatenation becomes robust to context size
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Takeaways

A sliding windows approach trained with a context-discounted objective function
1. Performs better on the disambiguation of inter-sentential discourse phenomena;
2. Improves predictions of the current reference;
3. Learn self-attention modules that are less distracted by context;
4. Is more robust to context sizes unseen during training.

Segment-shifted position embeddings further help focusing attention and slightly improve performance.
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Thank you for listening!
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Link to Focused Concatenation for Context-Aware Neural Machine Translation



Analysis of context discounting

Our empirical analysis on concatenation models trained with the 
context-discounted objective shows that context discounting 
enables:

1. better predictions of the current target sentence (lower 
validation loss), both absolutely (top plot) and relatively to the 
quality of the prediction of target context (bottom plot);
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context-discounted objective shows that context discounting 
enables:

1. better predictions of the current target sentence (lower 
validation loss), both absolutely (top plot) and relatively to the 
quality of the prediction of target context (bottom plot);

2. increased focus of self-attention on the current sentence: 
the stronger the context discounting the stronger the average 
portion of attention that is focused on the current sentence 
from tokens belonging to the current sentence;

3. robustness of concatenation models to windows sizes 
unseen during training.
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We also analysed how the distribution of attention weights changes 
when adding segment-shifted position embeddings, finding that:

1. Average entropy of self and cross-attention weights 
decreases with the help of context discounting and 
segment-shifted positions.

Finally, we performed two ablation studies:

2. a comparison between models adopting different values of 
segment shifting. No significant differences (p > 0.05);

3. a comparison with learned segment embeddings and 
sinusoidal segment embeddings. No significant differences 
(p > 0.05), except for s4to4+lrn+CD on En→De.
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