Focused Concatenation for Context-Aware NMT

Lorenzo Lupo*, Marco Dinarelli*, Laurent Besacier*^

Context-aware NMT

 Image: One of the sector of

Context-aware NMT

current OOO OOO OOO : source doc OOO : source sentence

Context-aware NMT

context current

: source sentence

1. Multi-encoding approaches

 context current

 OO
 OO
 OO
 : source doc
 OO
 : source sentence

K=2

context current

OOO : source sentence

K consecutive sentences are concatenated before being fed into the standard NMT architecture

→ SlidingKtoK

K=2

context current

: source sentence

K consecutive sentences are concatenated before being fed into the standard NMT architecture

→ SlidingKtoK

K=2

 Image: Organization of the sector of the

→ SlidingKtoK

K=2

OOO OOO : source doc OOO : source sentence

input 1.		
	translate	

→ SlidingKtoK

K=2

input 1. OOO context current		
input 2.	translate	

→ SlidingKtoK

K=2

→ SlidingKtoK

K=2

→ SlidingKtoK

K=2

→ SlidingKtoK

K=2

→ SlidingKtoK

K=2

→ SlidingKtoK

Strengths	Weaknesses
No extra learnable parameters added to the standard Transformer architecture.	

Strengths	Weaknesses
No extra learnable parameters added to the standard Transformer architecture.	
Since current and context sentences belong to the same sequence, inter-sentential token contextualization can be treated in the same way as intra-sentential contextualization .	

Strengths	Weaknesses
No extra learnable parameters added to the standard Transformer architecture.	Attention can be <i>distracted</i> by context instead of focusing on local syntactic structures [1], which are the most abundant, while context is important only for sparse tokens [2].
Since current and context sentences belong to the same sequence, inter-sentential token contextualization can be treated in the same way as intra-sentential contextualization .	

[1] Bao et al., 2021: G-transformer for document-level machine translation.
[2] Lupo et al., 2022: Divide and Rule: Effective Pre-Training for Context-Aware Multi-Encoder Translation Models.

Strengths	Weaknesses
No extra learnable parameters added to the standard Transformer architecture.	Attention can be <i>distracted</i> by context instead of focusing on local syntactic structures [1], which are the most abundant, while context is important only for sparse tokens [2].
Since current and context sentences belong to the same sequence, inter-sentential token contextualization can be treated in the same way as intra-sentential contextualization .	Even though we only keep the translation of the current sentence after generation, the standard translation objective function is not focused on predictions of the current sentence .

[1] Bao et al., 2021: G-transformer for document-level machine translation.
[2] Lupo et al., 2022: Divide and Rule: Effective Pre-Training for Context-Aware Multi-Encoder Translation Models.

Proposed approaches

Context-discounted objective

Training example

$$egin{aligned} &m{x}_{K}^{j} = m{x}^{j-K+1}m{x}^{j-K+2}...m{x}^{j-1}m{x}^{j} \ &m{y}_{K}^{j} = m{y}^{j-K+1}m{y}^{j-K+2}...m{y}^{j-1}m{y}^{j} \ &m{\mathcal{L}}(m{x}_{K}^{j},m{y}_{K}^{j}) = \sum_{t=1}^{|m{y}_{K}^{j}|}\log P(m{y}_{K,t}^{j}|m{y}_{K,< t}^{j},m{x}_{K}^{j}) \end{aligned}$$

Conventional objective

Context-discounted objective

Training example

Conventional objective

$$m{x}_{K}^{j} = m{x}^{j-K+1} m{x}^{j-K+2} ... m{x}^{j-1} m{x}^{j}$$

 $m{y}_{K}^{j} = m{y}^{j-K+1} m{y}^{j-K+2} ... m{y}^{j-1} m{y}^{j}$
 $\mathcal{L}(m{x}_{K}^{j}, m{y}_{K}^{j}) = \sum_{t=1}^{|m{y}_{K}^{j}|} \log P(m{y}_{K,t}^{j} |m{y}_{K,< t}^{j}, m{x}_{K}^{j})$

Context-discounted objective

$$\begin{split} \mathcal{L}_{\text{CD}}(\boldsymbol{x}_{K}^{j},\boldsymbol{y}_{K}^{j}) &= \text{CD} \cdot \mathcal{L}_{context} + \mathcal{L}_{current} \\ &= \text{CD} \cdot \mathcal{L}(\boldsymbol{x}_{K}^{j},\boldsymbol{y}_{K-1}^{j-1}) + \mathcal{L}(\boldsymbol{x}_{K}^{j},\boldsymbol{y}^{j}) \\ & 0 \leq \text{CD} < 1 \end{split}$$

Context-discounted objective

$$\begin{array}{ll} \text{Training example} & \boldsymbol{x}_{K}^{j} = \boldsymbol{x}^{j-K+1} \boldsymbol{x}^{j-K+2} ... \boldsymbol{x}^{j-1} \boldsymbol{x}^{j} \\ \boldsymbol{y}_{K}^{j} = \boldsymbol{y}^{j-K+1} \boldsymbol{y}^{j-K+2} ... \boldsymbol{y}^{j-1} \boldsymbol{y}^{j} \end{array}$$

$$\begin{array}{ll} \text{Conventional objective} & \mathcal{L}(\boldsymbol{x}_{K}^{j}, \boldsymbol{y}_{K}^{j}) = \sum_{t=1}^{|\boldsymbol{y}_{K}^{j}|} \log P(\boldsymbol{y}_{K,t}^{j} | \boldsymbol{y}_{K,

$$\begin{array}{l} \text{Context-discounted objective} & \mathcal{L}_{\text{CD}}(\boldsymbol{x}_{K}^{j}, \boldsymbol{y}_{K}^{j}) = \text{CD} \cdot \mathcal{L}_{context} + \mathcal{L}_{current} \\ & = \text{CD} \cdot \mathcal{L}(\boldsymbol{x}_{K}^{j}, \boldsymbol{y}_{K-1}^{j-1}) + \mathcal{L}(\boldsymbol{x}_{K}^{j}, \boldsymbol{y}^{j}) \end{array}$$

$$\begin{array}{l} 0 \leq \text{CD} < 1 \end{array}$$$$

 \rightarrow improve model focus on the current sentence;

 Image: Sliding 3to 3

		+10	+20	
positions	123	4 5 6	789	
	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc$	Sliding3to3
segment-shifted positions shift=10	123	14 15 16	27 28 29	

- \rightarrow strengthen sentence boundaries;
- → better distinguish between inter-sentential and intra-sentential discourse phenomena;
- → no extra parameters (VS segment-embeddings like BERT).

- \rightarrow strengthen sentence boundaries;
- → better distinguish between inter-sentential and intra-sentential discourse phenomena;
- → no extra parameters (VS segment-embeddings like BERT).

Experiments

Models

base: context-agnostic transformer-base **s4to4**: sliding4to4 concatenation approach

Models

base: context-agnostic transformer-base **s4to4**: sliding4to4 concatenation approach

Data

English → Russian

- 6M sentence pairs from OpenSubtitles
- short documents of 4 sentences each

English → German

- 0.2M sentence pairs from IWSLT
- long documents of hundreds of sentences each

Models

base: context-agnostic transformer-base **s4to4**: sliding4to4 concatenation approach

Data

English → Russian

- 6M sentence pairs from OpenSubtitles
- short documents of 4 sentences each

English → German

- 0.2M sentence pairs from IWSLT
- long documents of hundreds of sentences each

Evaluation

BLEU on test set

+ COMET

Models

base: context-agnostic transformer-base **s4to4**: sliding4to4 concatenation approach

Data

English → Russian

- 6M sentence pairs from OpenSubtitles
- short documents of 4 sentences each

English → German

- 0.2M sentence pairs from IWSLT
- long documents of hundreds of sentences each

Evaluation

BLEU on test set + COMET Average translation quality metrics are scarcely sensitive to context-aware translation improvements, which affect a few words only.
Targeted evaluation is necessary to appreciate model differences

Models

base: context-agnostic transformer-base **s4to4**: sliding4to4 concatenation approach

Data

English → Russian

- 6M sentence pairs from OpenSubtitles
- short documents of 4 sentences each

English → German

- 0.2M sentence pairs from IWSLT
- long documents of hundreds of sentences each

Evaluation

+

Average translation quality metrics are scarcely sensitive to context-aware translation improvements, which

- BLEU on test set | affect a few words only. ➡ Targeted evaluation is necessary to appreciate model differences
 - + COMET
 - Accuracy on targeted test sets for the translation of discourse phenomena (Disc.):
 - <u>coreferential pronoun for En-De (ContraPro)</u>
 - o deixis, lexical cohesion, noun phrase ellipsis, verb-phrase ellipsis for En-Ru (Voita)

Preliminary analysis

$$\mathcal{L}_{ ext{CD}}(oldsymbol{x}_{K}^{j},oldsymbol{y}_{K}^{j}) = ext{CD}{\cdot}\mathcal{L}_{context} + \mathcal{L}_{current}$$

Preliminary analysis

Evaluation of **En→Ru s4to4** trained with various levels of context discounting, ranging from 1 to 0.

Preliminary analysis

Evaluation of **En→Ru s4to4** trained with various levels of context discounting, ranging from 1 to 0.

En→Ru										
System	Deixis	Lex co.	Ell. inf	Ell. vp	Disc.	BLEU	COMET			
base	50.00	45.87	51.80	27.00	46.64	31.98	0.321			
s4to4	85.80	46.13	79.60	73.20	72.02	32.45	0.329			
s4to4 + CD	87.16*	46.40	81.00	78.20*	73.42*	32.37	0.328			
s4to4 + shift + CD	85.76	48.33^{*}	81.40	80.4*	73.56*	32.37	0.334^{*}			

				En→Ru				
baselines:	System	Deixis	Lex co.	Ell. inf	Ell. vp	Disc.	BLEU	COMET
	base	50.00	45.87	51.80	27.00	46.64	31.98	0.321
	s4to4	85.80	46.13	79.60	73.20	72.02	32.45	0.329
	s4to4 + CD	87.16*	46.40	81.00	78.20*	73.42*	32.37	0.328
	s4to4 + shift + CD	85.76	48.33^{*}	81.40	80.4*	73.56*	32.37	0.334^{*}

	En→Ru								
	System	Deixis	Lex co.	Ell. inf	Ell. vp	Disc.	BLEU	COMET	
baselines:	base	50.00	45.87	51.80	27.00	46.64	31.98	0.321	
	s4to4	85.80	46.13	79.60	73.20	72.02	32.45	0.329	
	s4to4 + CD	87.16*	46.40	81.00	78.20*	73.42*	32.37	0.328	
our approaches	s4to4 + shift + CD	85.76	48.33^{*}	81.40	80.4*	73.56*	32.37	0.334^{*}	

2	En→Ru									
	System	Deixis	Lex co.	Ell. inf	Ell. vp	Disc.	BLEU	COMET		
baselines:	base	50.00	45.87	51.80	27.00	46.64	31.98	0.321		
	s4to4	85.80	46.13	79.60	73.20	72.02	32.45	0.329		
	s4to4 + CD	87.16*	46.40	81.00	78.20*	73.42*	32.37	0.328		
our approaches	s4to4 + shift + CD	85.76	48.33^{*}	81.40	80.4*	73.56*	32.37	0.334^{*}		

				En→Ru	ac	curacy (%) on disc	ourse phenomena
	System	Deixis	Lex co.	Ell. inf	Ell. vp	Disc.	BLEU	COMET
baselines:	base	50.00	45.87	51.80	27.00	46.64	31.98	0.321
	s4to4	85.80	46.13	79.60	73.20	72.02	32.45	0.329
our approaches	s4to4 + CD	87.16*	46.40	81.00	78.20*	73.42*	32.37	0.328
	s4to4 + shift + CD	85.76	48.33*	81.40	80.4*	73.56*	32.37	0.334^{*}

The **accuracy on Disc.** is detailed on its left with the accuracy on each of the 4 subsets composing the targeted test set.

			En→Ru acc			curacy (%) on discourse phenomen			mena
	System	Deixis	Lex co.	Ell. inf	Ell. vp	Disc.	BLEU	COMET	
baselines:	base	50.00	45.87	51.80	27.00	46.64	31.98	0.321	
	s4to4	85.80	46.13	79.60	73.20	72.02	32.45	0.329	
our approaches	s4to4 + CD	87.16*	46.40	81.00	78.20^{*}	73.42*	32.37	0.328	
	s4to4 + shift + CD	85.76	48.33^{*}	81.40	80.4*	73.56*	32.37	0.334*	

The **accuracy on Disc.** is detailed on its left with the accuracy on each of the 4 subsets composing the targeted test set.

				En→Ru	ac	curacy (%) on disc	ourse phei	nomena
	System	Deixis	Lex co.	Ell. inf	Ell. vp	Disc.	BLEU	COMET	
	base	50.00	45.87	51.80	27.00	46.64	31.98	0.321	
baselines:	s4to4	85.80	46.13	79.60	73.20	72.02	32.45	0.329	
	s4to4 + CD	87.16*	46.40	81.00	78.20^{*}	73.42*	32.37	0.328	
our approaches	s4to4 + shift + CD	85.76	48.33^{*}	81.40	80.4*	73.56*	32.37	0.334^{*}	
				En→De		1		35. (1)	
		d=1	d=2	d=3	d>3	Disc.	BLEU	COMET	
	base	32.89	43.97	47.99	70.58	37.27	29.63	0.546	
	s4to4	68.89	74.96	79.58	87.78	71.35	29.48	0.536	
	s4to4 + CD	72.86*	75.96	80.10	84.38	74.31*	29.32	0.522	
	s4to4 + shift + CD	72.56*	77.15*	80.27	86.65	74.39*	29.20	0.528	

The **accuracy on Disc.** is detailed on its left with the accuracy on each of the 4 subsets composing the targeted test set.

Benchmarking

]	En→Ru					
	System	Deixis	Lex co.	. Ell.	inf Ell.	vp	Di	sc.
	Chen et al. (2021)	62.30	47.90	64.9	0 36	.00	55	.61
	Sun et al. (2022)	64.70	46.30	65.9	00 53	.00	58	.13
	Zheng et al. (2020)	61.30	58.10	72.2	20 80	.00	63	.30
	Kang et al. (2020)	79.20	62.00	71.8	80 80	.80	73	.46
	Zhang et al. (2020)	91.00	46.90	78.2	20 82	.20	75	.61
:	s4to4 + shift + CD	85.76	48.33	81.4	10 80	.40 ¦	73	.56
			En→De					
Syst	tem		d=1	d=2	d=3	d>	3	Disc.
Mar	ruf et al. (2019)		34.70	46.40	51.10	70.	10	39.15
Voit	ta et al. (2018)		39.00	48.00	54.00	66.	00	42.55
Stoj	janovski and Fraser	(2019)	53.00	46.00	50.00	71.	00	52.55
Lup	o et al. (2022)		56.50	44.90	48.70	73.3	30	54.98
Mül	ller et al. (2018)		58.00	55.00	55.00	75.	00	58.13
s4tc	b4 + shift + CD		72.56	77.15	80.27	86.	65	74.39

Analysis

Impact on the distribution of attention weights

Self-attention gets more focused

System	Attn entropy
s4to4	2.293
s4to4 + CD	2.276
s4to4 + shift + CD	2.251

Concatenation becomes robust to context size

Takeaways

A sliding windows approach trained with a **context-discounted objective** function

- 1. Performs better on the disambiguation of inter-sentential discourse phenomena;
- 2. Improves predictions of the current reference;
- 3. Learn self-attention modules that are less distracted by context;
- 4. Is more robust to context sizes unseen during training.

Segment-shifted position embeddings further help focusing attention and slightly improve performance.

Thank you for listening!

Link to Focused Concatenation for Context-Aware Neural Machine Translation

Analysis of context discounting

Our empirical analysis on concatenation models trained with the context-discounted objective shows that **context discounting enables**:

1. **better predictions of the current target sentence** (lower validation loss), both absolutely (top plot) and relatively to the quality of the prediction of target context (bottom plot);

Analysis of context discounting

Our empirical analysis on concatenation models trained with the context-discounted objective shows that **context discounting enables**:

- 1. **better predictions of the current target sentence** (lower validation loss), both absolutely (top plot) and relatively to the quality of the prediction of target context (bottom plot);
- increased focus of self-attention on the current sentence: the stronger the context discounting the stronger the average portion of attention that is focused on the current sentence from tokens belonging to the current sentence;

Analysis of context discounting

Our empirical analysis on concatenation models trained with the context-discounted objective shows that **context discounting enables**:

- 1. **better predictions of the current target sentence** (lower validation loss), both absolutely (top plot) and relatively to the quality of the prediction of target context (bottom plot);
- 2. **increased focus of self-attention on the current sentence**: the stronger the context discounting the stronger the average portion of attention that is focused on the current sentence from tokens belonging to the current sentence;
- 3. **robustness** of concatenation models to windows sizes unseen during training.

We also analysed how the distribution of attention weights changes when adding segment-shifted position embeddings, finding that:

System	Attn entropy
s4to4	2.293
s4to4 + CD	2.276
s4to4 + shift + CD	2.251

We also analysed how the distribution of attention weights changes when adding segment-shifted position embeddings, finding that:

System	Attn entropy
s4to4	2.293
s4to4 + CD	2.276
s4to4 + shift + CD	2.251

1. Average entropy of self and cross-attention weights decreases with the help of context discounting and segment-shifted positions.

We also analysed how the distribution of attention weights changes when adding segment-shifted position embeddings, finding that:

 Average entropy of self and cross-attention weights decreases with the help of context discounting and segment-shifted positions.

Finally, we performed two ablation studies:

 a comparison between models adopting different values of segment shifting. No significant differences (p > 0.05);

System	Shift	Disc.	BLEU	
s4to4 + shift + CD	100	73.68	32.41	
s4to4 + shift + CD	avg-sequence	73.38	32.37	
s4to4 + shift + CD	avg-corpus	73.97	32.45	

	En-	→Ru	En→De		
System	Disc.	BLEU	Disc.	BLEU	
s4to4 + shift + CD	73.56	32.45	74.39	29.20	
s4to4 + lrn + CD	73.68	32.45	72.14	28.35	
s4to4 + sin + CD	73.48	32.53	73.88	29.23	

We also analysed how the distribution of attention weights changes when adding segment-shifted position embeddings, finding that:

1. Average entropy of self and cross-attention weights decreases with the help of context discounting and segment-shifted positions.

Finally, we performed two ablation studies:

- a comparison between models adopting different values of segment shifting. No significant differences (p > 0.05);
- a comparison with learned segment embeddings and sinusoidal segment embeddings. No significant differences (p > 0.05), except for s4to4+lrn+CD on En→De.